129 research outputs found

    Toward an Active Aging Society: An IT Model to Engage the Aging Population

    Full text link
    © 2019 IEEE. Many countries around the world are expecting a growing number of elderly people as the society is aging over time. This shift is expected to create a large impact on the health and social security system. The cost of having an increasing proportion of elderly people is emerging as a challenge for governments, so much that many countries are encouraging their people to stay in the workforce longer. As a result, the aging population requires a solution that allows them to remain productive and keeping them mentally healthy. Existing solutions rely on the benefits of social networks or service networks to keep them active and improve mental health. However, these solutions fail to allow elderly people to act as a value contributor for the society. This paper proposes the design of a new model that allows elderly people to actively and collaboratively provide value to the society through an assistive platform that integrates a service network with a social network. This model combines the advantages of the social network to connect them and utilize the advantages of the service network to create opportunities for elderly people to offer their skills and knowledge to exchange benefits with other users. The proposed model can be used as a mean to engage seniors to the community, allowing them to generate value for themselves and the community while staying mentally healthy

    Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell

    Full text link
    © 2020, Springer Nature Switzerland AG. In this study, magnetic snail shell (MSS) prepared by impregnating of iron oxide onto snail shell (SS) powder was used for removing Cr(VI) from aqueous solution. Among six different mass ratios of Fe/SS powder studied, the MSS25 produced at a ratio of 25% achieved the highest Cr(VI) adsorption capacity. Batch adsorption experiments were conducted to investigate the adsorption isotherm, kinetics, and mechanism of Cr(VI) onto MSS25. The results illustrated that adsorption of Cr(VI) onto MSS25 reached equilibrium after 150 min at pH 3. The adsorption kinetics could be well described by the pseudo-second order model (R2 = 0.986). The Langmuir model (R2 = 0.971) was the best-fitting model that described the adsorption isotherm of Cr(VI) onto MSS25. The maximum adsorption capacity was 46.08 mg Cr(VI) per gram of MSS25. Ion exchange, electrostatic attraction, and adsorption-coupled reduction were determined as the main adsorption mechanisms of Cr(VI) onto MSS25. The high percentages of CaCO3 and Fe3O4 found in the MSS25 structure made a significant contribution to the Cr(VI) adsorption process

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Mechanography assessment of fall risk in older adults: the Vietnam Osteoporosis Study

    Full text link
    Background Jumping mechanography is a technology for quantitatively assessing muscular function and balance in older adults. This study sought to define the association between jumping mechanography parameters and fall risk in Vietnamese individuals. Methods The study involved 375 women and 244 men aged 50 years and older, who were recruited from the general population in Ho Chi Minh City (Vietnam). The individuals had been followed for 2 years. At baseline, Esslinger Fitness index (EFI), jumping power, force, velocity of lower limbs, and the ability to maintain balance were measured by a Leonardo Mechanograph Ground Reaction Force system (Novotec Medical, Pforxheim, Germany). The incidence of falls during the follow-up period was ascertained from self-report. Logistic regression analysis was used to analyse the association between jumping mechanography parameters and fall risk. Results The average age of participants at baseline was 56.7 years (SD 5.85). During the 2 year follow-up, 92 falls were reported, making the incidence of fall at ~15% [95% confidence interval (CI), 12.1 to 18.2]. The incidence of fall increased with advancing age, and women had a higher incidence than men (17.6% vs. 10.7%; P = 0.024). In univariate analysis, maximal velocity [odds ratio (OR) 0.65; 95% CI, 0.52 to 0.82], maximal force (OR 0.83; 95% CI, 0.65 to 1.04), and maximal power (OR 0.68; 95% CI, 0.52 to 0.88) were each significantly associated with fall risk. EFI was not significantly associated with fall risk (OR 1.09; 95% CI, 0.86 to 1.39). However, in a multiple logistic regression model, greater maximum velocity was associated with lower odds of fall (OR 0.38; 95% CI, 0.16 to 0.92). Conclusions These data suggest that jumping mechanography is a useful tool for assessing fall risk in older adults of Vietnamese background

    Optimal Energy Efficiency with Delay Constraints for Multi-layer Cooperative Fog Computing Networks

    Full text link
    We develop a joint offloading and resource allocation framework for a multi-layer cooperative fog computing network, aiming to minimize the total energy consumption of multiple mobile devices subject to their service delay requirements. The resulting optimization involves both binary (offloading decisions) and real variables (resource allocations), making it an NP-hard and computationally intractable problem. To tackle it, we first propose an improved branch-and-bound algorithm (IBBA) that is implemented in a centralized manner. However, due to the large size of the cooperative fog computing network, the computational complexity of the proposed IBBA is relatively high. To speed up the optimal solution searching as well as to enable its distributed implementation, we then leverage the unique structure of the underlying problem and the parallel processing at fog nodes. To that end, we propose a distributed framework, namely feasibility finding Benders decomposition (FFBD), that decomposes the original problem into a master problem for the offloading decision and subproblems for resource allocation. The master problem (MP) is then equipped with powerful cutting-planes to exploit the fact of resource limitation at fog nodes. The subproblems (SP) for resource allocation can find their closed-form solutions using our fast solution detection method. These (simpler) subproblems can then be solved in parallel at fog nodes. The numerical results show that the FFBD always returns the optimal solution of the problem with significantly less computation time (e.g., compared with the centralized IBBA approach). The FFBD with the fast solution detection method, namely FFBD-F, can reduce up to 60%60\% and 90%90\% of computation time, respectively, compared with those of the conventional FFBD, namely FFBD-S, and IBBA

    Phosphate Adsorption by Silver Nanoparticles-Loaded Activated Carbon derived from Tea Residue.

    Full text link
    This study presents the removal of phosphate from aqueous solution using a new silver nanoparticles-loaded tea activated carbon (AgNPs-TAC) material. In order to reduce costs, the tea activated carbon was produced from tea residue. Batch adsorption experiments were conducted to evaluate the effects of impregnation ratio of AgNPs and TAC, pH solution, contact time, initial phosphate concentration and dose of AgNPs-AC on removing phosphate from aqueous solution. Results show that the best conditions for phosphate adsorption occurred at the impregnation ratio AgNPs/TAC of 3% w/w, pH 3, and contact time lasting 150 min. The maximum adsorption capacity of phosphate on AgNPs-TAC determined by the Langmuir model was 13.62 mg/g at an initial phosphate concentration of 30 mg/L. The adsorption isotherm of phosphate on AgNPs-TAC fits well with both the Langmuir and Sips models. The adsorption kinetics data were also described well by the pseudo-first-order and pseudo-second-order models with high correlation coefficients of 0.978 and 0.966, respectively. The adsorption process was controlled by chemisorption through complexes and ligand exchange mechanisms. This study suggests that AgNPs-TAC is a promising, low cost adsorbent for phosphate removal from aqueous solution

    Patterns of HIV prevalence among injecting drug users in the cross-border area of Lang Son Province, Vietnam, and Ning Ming County, Guangxi Province, China

    Get PDF
    BACKGROUND: To assess patterns of injecting drug use and HIV prevalence among injecting drug users (IDUs) in an international border area along a major heroin trans-shipment route. METHODS: Cross-sectional surveys of IDUs in 5 sites in Lang Son Province, Vietnam (n = 348) and 3 sites in Ning Ming County, Guangxi Province, China (n = 308). Respondents were recruited through peer referral ("snowball") methods in both countries, and also from officially recorded lists of IDUs in Vietnam. A risk behavior questionnaire was administered and HIV counseling and testing conducted. RESULTS: Participants in both countries were largely male, in their 20s, and unmarried. A majority of subjects in both countries were members of ethnic minority groups. There were strong geographic gradients for length of drug injecting and for HIV seroprevalence. Both mean years injecting and HIV seroprevalence declined from the Vietnamese site farthest from the border to the Chinese site farthest from the border. 10.6% of participants in China and 24.5% of participants in Vietnam reported crossing the international border in the 6 months prior to interview. Crossing the border by IDUs was associated with (1) distance from the border, (2) being a member of an ethnic minority group, and (3) being HIV seropositive among Chinese participants. CONCLUSION: Reducing the international spread of HIV among IDUs will require programs at the global, regional, national, and "local cross border" levels. At the local cross border level, the programs should be coordinated on both sides of the border and on a sufficient scale that IDUs will be able to readily obtain clean injection equipment on the other side of the border as well as in their country of residence

    Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to clarify the clinical significance of TM4SF members CD9, CD63 and CD82 in human gastric carcinoma.</p> <p>Methods</p> <p>By employing RT-PCR and immunohistochemistry, we studied the expression of CD9, CD63 and CD82 in 49 paired tissue specimens of normal gastric mucosa and carcinoma. All tissues were obtained from patients who underwent curative surgery.</p> <p>Results</p> <p>All normal gastric epithelium and gastric ulcer tissues strongly expressed transcripts and proteins of CD9, CD63 and CD82 as compared with corresponding controls. We found a significant correlation between CD63 mRNA level and different pM statuses (P = 0.036). Carcinomas in M0 stage revealed a stronger expression of CD63 than carcinomas in M1 stage. Expression of CD9 protein was found significantly stronger in pN0, pM0 than in advanced pN stages (P = 0.03), pM1 (P = 0.013), respectively. We found the relationship between CD63 expression, gender (p = 0.09) and nodal status (p = 0.028), respectively. Additionally, advanced and metastasized tumor tissues revealed significantly down-regulated CD82 protein expression (p = 0.033 and p = 0, respectively), which correlated with the tumor pTNM stage (p = 0.001).</p> <p>Conclusion</p> <p>The reduction of CD9, CD63 and CD82 expression are indicators for the metastatic potential of gastric carcinoma cells. Unlike their expression in other tumor types, the constitutive expression of CD63 may indicate that this factor does play a direct role in human gastric carcinogenesis.</p

    The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken

    Get PDF
    Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.We thank Prof. Miguel Lafarga for helpful comments and advice. We thank Dr Jose E Gomez-Arozamena for helping us with the irradiation experiments. We are grateful to Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017–84046-P) from the Spanish Science and Innovation Ministry to JAM. C.S.F is recipient of a FPI grant (BES-2015–074267)
    corecore